

Predictive Analytics War Stories

Feb 13, 2015 Hobson Lane

slides.com/hobsonlane/data-analytics-war-stories/live

bit.ly/pawsvote Choose Your Story

7707-2-TOTAL (770) 728-6825

- 1. Only Nyquist Knows
- 2. The Meaning of Mean
- 3. Data Dearth
- 4. Question the Question
- 5. Deep Net Runs Aground
- 6. Escape the Maze

When your vehicle is out of control... **1. Only Nyquist Knows**

1. Only Nyquist Knows

How fast is

the tumble?

4 sec !

• Nav sensors (gyro., accel) are "pegged"

• All you know is solar power:

1. Only Nyquist Knows

Try an Anti-Aliasing Filter

Fail: Only Nyquist Knows

Workarounds

If Nyquist sampling (2x faster than truth) isn't possible....

- Use a different sensor
 - Postprocess existing signal (radio doppler)
- Sample irregularly!
 - Captures higher frequencies
 - Lomb-Scargle to post-process

spectrum = scipy.signal.lombscargle(sample_times, samples, frequencies)

• Probabilistic modeling

Great for overwhelming data volume (IoT)

2. The Meaning of Mean

- Means don't tell the whole story
- Consider both μ and σ
- Meaning may be found in the means for each...
 - group, cluster, or class
- For us we started with grouping by time of day, but that wasn't enough...

2. The Meaning of Mean

- Regression and classification required
- Many "fundamental frequencies"

Mean for Each Time of Day

Classify Before Getting Mean

3. Data Dearth

• Tuning a 2-DOF predictive filter for performance More data gives algorithm more to work with Less Overfitting More Performance Performance Anticlined cliffs (\$) or "terraces" Conservatism More Data

3. Data Dearth

- Sometimes more of the same doesn't help
 - Exogenous factors confound the smartest algorithm
- Make the **exogenous endogenous** (new data source)

Correlation != Causation (a. la. Tyler Vigen) Multiple interracting causes Normalize return rate for sales (lag-compensated)

4. Question the 6σ Question "Cost of quality" "Customer reject rate" "Defect rate" Reject rate = Rejects (last quarter) Sales (last quarter)

Simple equation everyone can agree on

But it's Wrong! And it's Late!

4. Better "Question"

Reject rate = $\frac{\text{Rejects (last quarter)}}{\text{Sales (qtr before last)}}$

Even Better

Reject rate = <u>Rejects (last quarter)</u> Sales (estimate lagged quarter)

Correct

Reject _ Rejects (last week) rate Sales (integral of lagged sales)

$$r_r = \Sigma_k lpha s_{n-k}$$

"Birth-Death Process"SaleLagReject $S(t) \rightarrow$ $H(t, \tau)$ R(t)

Product enters "pipeline" arbitrarily

Flow rate (Reject rate) All products "die", Question is **when** And the portion that happens too soon

 $r_r = \sum_k lpha s_{n-k}$

Histogram reveals trend and seasonality

Sales

Date

Rejects

Returns Lag Histogram

Lag from Sale to Return (days)

Lagged Sales

4. Analyze the Question

Cumulative histograms focus attention on final total

Lag from Sale to Return (days)

Product returns stop when... • You stop accepting returns

- You stop counting
- You stop selling

4. Normalize & Compare

Cumulative Returns Lag

Lag from Sale to Return (days)

4. Analyze the Question

Normalize histograms to compare categories

Cumulative Returns Lag

Lag from Sale to Return (days)

Unsupervised natural language processing?

President inaugural speeches Target category = political party

What are the US Presidents' political parties based on speeches?

What are the US Presidents' political parties based on speeches?

- The category you're interested in will not likely be the most important "factor" in the NLP statistics
- Dimension reduction (SVD, PCA) can identify factors
 - Word-sets that are most significant
- These represent the "themes"
 - Interpretation of these "themes" is up to you
 - Statistics \neq Meaning

5. Deep Nets Run Aground

Deep net performs well!

5. Deep Nets Run Aground

Not so fast... it's overfitting

5. Deep Nets Run Aground

$$\mathrm{p}
ightarrow \mathrm{W}_{S^k,S^{(k+1)}}^k
ightarrow \mathrm{a} = \mathrm{W}_{S^k,S^{(k+1)}}^k \mathrm{p}$$

$\mathbf{W}_{n,m}^k =$	$\begin{bmatrix} w_{1,1} \\ w_{2,1} \end{bmatrix}$	$w_{1,2} \\ w_{2,2}$	 $\begin{bmatrix} w_{1,m} \\ w_{2,m} \end{bmatrix}$
	:	:	:
	$w_{n,1}$	$w_{n,2}$	 $w_{n,m}$

Conventional Hebb rule

$$\mathrm{W}^{new} = W^{old} + \mathrm{t}_q \mathrm{p}_q^T$$

• Hebb "delta" rule

$$\mathrm{W}^{new} = W^{old} + lpha (\mathrm{t}_q - \mathrm{a}_q) \mathrm{p}_q^T$$

5. Shallow Data

$$\mathrm{p} igstarrow \mathrm{W}_{S^k,S^{(k+1)}} igstarrow \mathrm{a} \ \mathrm{a} = \mathrm{W}_{S^k,S^{(k+1)}} \mathrm{p}$$

	$w_{1,1} \\ w_{2,1}$	$w_{1,2} \\ w_{2,2}$	$\begin{bmatrix} w_{1,m} \\ w_{2,m} \end{bmatrix}$
$\mathbf{W}_{n,m}^{\kappa} =$	\vdots $w_{n,1}$	$\vdots \\ w_{n,2}$	$\vdots \\ w_{n,m}$

• Model degree:

$$\sum_k S^k S^{(k+1)}$$

• Training data DOF:

$$S^1S^3N_{samples}$$

(independent samples)

5. Shallow Data

$$\mathrm{p} igstarrow \mathrm{W}_{S^k,S^{(k+1)}} igstarrow \mathrm{a} \ \mathrm{a} = \mathrm{W}_{S^k,S^{(k+1)}} \mathrm{p}$$

$\mathbf{W}_{n,m}^{n} =$		

- Model degree:
- $S^1S^2 + S^2S^3$ (1 hidden layer) • Training data DOF: $(S^1 + S^3)N_{samples}$ (independent samples)

5. Bottom Line

bit.ly/nntune

6. Escape from the Maze

- Tight heuristics vital for efficient graph search
- "Always turn right" is not good enough

6. Escape from the Maze

Don't bother with "exhaustive" correlation search

$$ext{complexity} pprox O(M^2_{_{10^7}}N^2) pprox 10^{24}$$

- Find db relationships using meta-data
 - min, max, median
 - #records
 - #distinct
 - for reals: mean, std

$ext{complexity} pprox O(MNlog(N)) pprox 10^{13}$

Human Heuristics

• Business knowledge narrows search:

- Repair technicians
- Product designers
- Factory managers
- Suppliers
- Sales channels
- Call center

Accidental "Experiements"

- Look for differences in
 - Model
 - Lot
 - Product
 - Sales Channel
 - Customer Demographic
 - Region/Culture
- Look for ...
 - New/deleted features
 - Documentation updates
 - Cost-saving parts changes
 - Production facilities (outsourced vs insourced)

Kruskal's Algorithm Minimum Spanning Tree

1. Add lowest cost edge with new node

2. Repeat until all nodes accounted for

Produces one graph for each connected subgraph

Built into python graph library (`networkx`):

```
def minimum_spanning_zipcodes():
    zipcode_query_sequence = []
    G = build_graph(api.db, limit=1000000)
    for CG in nx.connected_component_subgraphs(G):
        for edge in nx.minimum_spanning_edges(CG):
            zipcode_query_sequence += [edge[2]['zipcode']]
    return zipcode_query_sequence
```

A* Algorithm Minimum Path to Goal

Provably optimal and optimally efficient

But typical data relationship graph has large branching factor

from networkx.algorithms.shortest_paths import astar_path
astar_path(G, source, target, heuristic=None)

Built into python graph library (`networkx`)

A* Algorithm Minimum Path to Goal

Provably optimal and optimally efficient

Built into python graph library (`networkx`)

from networkx.algorithms.shortest_paths import astar_path
astar_path(G, source, target, heuristic=None)

You better have a good heuristic!

It's Open Source! github.com/sharplabs

bit.ly/pawsvote Choose Your Story

7707-2-TOTAL (770) 728-6825

- 1. Only Nyquist Knows
- 2. The Meaning of Mean
- 3. Data Dearth
- 4. Question the Question
- 5. Deep Net Runs Aground
- 6. Escape the Maze

- Consider sample rate
- Classify before mean
- Explore data sources
- Reject rate metric
- data > nodes x inputs
- Lazy correlation

References

- "Data Driven Documents"
 - 2011, Mike Bostock
- "Data Science with `pug`"
 - 2014, Lane, Zen, Kowalski, PDX Python U.G.
- "Neural Network Design"
 - 2014, Hagan, Demuth, et. al., OKSU
- "Forecasting Product Returns"
 - 2001, Toktay, INSEAD
- `scipy.ransac`
 - 2014, Andrew D. Straw
- "Choose Your Own Adventure Presentation"
 - 2014, Matt Makai