GRAARP
 LABORATORIES
 OF AMERICA
 Predictive Analytics War Stories

Feb 13, 2015
Hobson Lane
slides.com/hobsonlane/data-analytics-war-stories/live

bit.ly/pawsvote Choose Your Story

> 7707-2-TOTAL (770) 728-6825

1. Only Nyquist Knows
2. The Meaning of Mean
3. Data Dearth
4. Question the Question
5. Deep Net Runs Aground
6. Escape the Maze

When your vehicle is out of control... 1. Only Nyquist Knows

1. Only Nyquist Knows

- Nav sensors (gyro., accel) are "pegged"
- All you know is solar power:

How fast is the tumble?

4 sec !

SMS: 7707-2-TOTAL or (770) 728-6825 MSGS: "1", "2", "3", "4", "5", or "6"

1. Only Nyquist Knows

Try an Anti-Aliasing Filter

Fail: Only Nyquist Knows

Workarounds

If Nyquist sampling ($2 x$ faster than truth) isn't possible....

- Use a different sensor
- Postprocess existing signal (radio doppler)
- Sample irregularly!
- Captures higher frequencies
- Lomb-Scargle to post-process

```
spectrum = scipy.signal.lombscargle(sample_times, samples, frequencies)
```

- Probabilistic modeling
- Great for overwhelming data volume (IoT)

2. The Meaning of Mean

- Means don't tell the whole story
- Consider both μ and σ
- Meaning may be found in the means for each...
- group, cluster, or class
- For us we started with grouping by time of day, but that wasn't enough...

2. The Meaning of Mean

- Regression and classification required
- Many "fundamental frequencies"

Mean for Each Time of Day

Classify Before Getting Mean

3. Data Dearth

- Tuning a 2-DOF predictive filter for performance
- More data gives algorithm more to work with
- Less Overfitting
- More Performance

Anticlined cliffs or "terraces"

Performance

(\$)

3. Data Dearth

- Sometimes more of the same doesn't help
- Exogenous factors confound the smartest algorithm
- Make the exogenous endogenous (new data source)

4. Question the Question

 Reduce these returns surges! \checkmarkMore sales => More returns

Correlation != Causation

(a. Ia. Tyler Vigen)

Multiple interracting causes
Normalize return rate for sales
(lag-compensated)

4. Question the 6σ Question "Cost of quality"
 "Customer reject rate"
 "Defect rate"

Rejects (last quarter)
 Sales (last quarter)

Simple equation everyone can agree on

But it's Wrong! And it's Late!

4. Better "Question"

Reject rate

Rejects (last quarter) Sales (qtr before last)

Even Better

Reject rate $=$

Rejects (last quarter)
 Sales (estimate lagged quarter)

Correct

Reject Rejects (last week)
rate

Sales (integral of lagged sales)

$$
r_{r}=\sum_{k} \alpha s_{n-k}
$$

"Birth-Death Process"

Sale
 Lag
 Reject

$$
S(t) \triangleleft H(t, \tau)
$$

Product enters
"pipeline" arbitrarily

Flow rate
(Reject rate)

All products "die",
Question is when
And the portion that happens too soon

$$
r_{r}=\Sigma_{k} \alpha s_{n-k}
$$

4. Question the Question

Histogram reveals trend and seasonality

Sales

Rejects

4. Question the Question

Returns Lag Histogram

Lag from Sale to Return (days)

Lag

Lagged Sales

Predicted Returns

Lag
 Sales Process

Rejects

$$
\begin{array}{cc}
S(t) \Rightarrow H(t, \tau) & \mapsto R(t) \\
= & = \\
\div &
\end{array}
$$

4. Analyze the Question

Cumulative histograms focus attention on final total

Cumulative Returns Lag

Product returns stop when... • You stop accepting returns

- You stop counting
- You stop selling

4. Normalize \& Compare

Cumulative Returns Lag

4. Analyze the Question

Normalize histograms to compare categories

Cumulative Returns Lag

4. Question the Question

Unsupervised natural language processing?

4. Question the Question

What are the US Presidents' political parties based on speeches?

4. Question the Question

What are the US Presidents' political parties based on speeches?

4. Question the Question

- The category you're interested in will not likely be the most important "factor" in the NLP statistics
- Dimension reduction (SVD, PCA) can identify factors
- Word-sets that are most significant
- These represent the "themes"
- Interpretation of these "themes" is up to you
- Statistics \neq Meaning

5. Deep Nets Run Aground

Deep net performs well!

SMS: 7707-2-TOTAL or (770) 728-6825 MSGS: "1", "2", "3", "4", "5", "6"

5. Deep Nets Run Aground

Not so fast... it's overfitting

SMS: 7707-2-TOTAL or (770) 728-6825 MSGS: "1", "2", "3", "4", "5", "6"

5. Deep Nets Run Aground

$$
\begin{aligned}
\mathrm{p} & \Rightarrow \mathrm{~W}_{S^{k}, S^{(k+1)}}^{k} \leadsto \mathrm{a} \\
\mathrm{a} & =\mathrm{W}_{S^{k}, S^{(k+1)}}^{k} \mathrm{p}
\end{aligned}
$$

- Conventional Hebb rule

$$
\mathrm{W}^{\text {new }}=W^{\text {old }}+\mathrm{t}_{q} \mathrm{p}_{q}^{T}
$$

- Hebb "delta" rule

$$
\mathrm{W}^{\text {new }}=W^{\text {old }}+\alpha\left(\mathrm{t}_{q}-\mathrm{a}_{q}\right) \mathrm{p}_{q}^{T}
$$

5. Shallow Data

$$
\begin{array}{rl}
\mathrm{p} \Rightarrow \mathrm{~W}_{S^{k}, S^{(k+1)}}^{k} & \mathrm{a} \\
\mathrm{a} & =\mathrm{W}_{S^{k}, S^{(k+1)}}^{k} \mathrm{p}
\end{array}
$$

- Model degree:

$$
\sum_{k} S^{k} S^{(k+1)}
$$

- Training data DOF:

$$
S^{1} S^{3} N_{\text {samples }}
$$

(independent samples)

5. Shallow Data

$$
\begin{aligned}
\mathrm{p} & \Rightarrow \mathrm{~W}_{S^{k}, S^{(k+1)}}^{k} \Rightarrow \mathrm{a} \\
\mathrm{a} & =\mathrm{W}_{S^{k}, S^{(k+1)}}^{k} \mathrm{p}
\end{aligned}
$$

- Model degree:

$$
S^{1} S^{2}+S^{2} S^{3}
$$

(1 hidden layer)

- Training dát DOF:

$$
\left(S^{1}+S^{3}\right) N_{\text {samples }} \text { (independent samples) }
$$

5. Bottom Line

$$
N_{\text {hidden }} \ll N_{\text {training }}
$$

bit.ly/nntune

6. Escape from the Maze

- Tight heuristics vital for efficient graph search
- "Always turn right" is not good enough

6. Escape from the Maze

- Don't bother with "exhaustive" correlation search
complexity $\approx O\left(\underset{10^{7}}{M_{10^{5}}^{2}} N^{2}\right) \approx 10^{24}$
- Find db relationships using meta-data
- min, max, median
- \#records
- \#distinct
- for reals: mean, std
$\operatorname{complexity} \approx O(M N \log (N)) \approx 10^{13}$

Human Heuristics

- Business knowledge narrows search:
- Repair technicians
- Product designers
- Factory managers
- Suppliers
- Sales channels
- Call center

Accidental "Experiements"
 - Look for differences in

- Model
- Lot
- Product
- Sales Channel
- Customer Demographic
- Region/Culture
- Look for ...
- New/deleted features
- Documentation updates
- Cost-saving parts changes
- Production facilities (outsourced vs insourced)

Kruskal's Algorithm Minimum Spanning Tree

1. Add lowest cost edge with new node
2. Repeat until all nodes accounted for

Produces one graph for each connected subgraph

Built into python graph library (`networkx `):

```
def minimum_spanning_zipcodes():
    zipcode_query_sequence = []
    G = build_graph(api.db, limit=1000000)
    for CG in nx.connected_component_subgraphs(G):
        for edge in nx.minimum_spanning_edges(CG):
            zipcode_query_sequence += [edge[2]['zipcode']]
    return zipcode_query_sequence
```


A* Algorithm

Minimum Path to Goal

Provably optimal and optimally efficient
But typical data relationship graph has large branching factor
from networkx.algorithms.shortest_paths import astar_path astar_path(G, source, target, heuristic=None)
Built into python graph library ('networkx `)

A* Algorithm Minimum Path to Goal

Provably optimal and optimally efficient

Built into python graph library (' networkx ')

```
from networkx.algorithms.shortest_paths import astar_path
astar_path(G, source, target, heuristic=None)
```

You better have a good heuristic!

It's Open Source! github.com/sharplabs

bit.ly/pawsvote Choose Your Story

7707-2-TOTAL (770) 728-6825

1. Only Nyquist Knows
2. The Meaning of Mean
3. Data Dearth
4. Question the Question
5. Deep Net Runs Aground
6. Escape the Maze

- Consider sample rate
- Classify before mean
- Explore data sources
- Reject rate metric
- data > nodes x inputs
- Lazy correlation

References

- "Data Driven Documents"
- 2011, Mike Bostock
- "Data Science with `pug`"
- 2014, Lane, Zen, Kowalski, PDX Python U.G.
- "Neural Network Design"
- 2014, Hagan, Demuth, et. al., OKSU
- "Forecasting Product Returns"
- 2001, Toktay, INSEAD
- `scipy.ransac`
- 2014, Andrew D. Straw
- "Choose Your Own Adventure Presentation"
- 2014, Matt Makai

